

Final event

The AEROFLEX project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 769658

Instructions Ride & Drive 12:00-13:00hf and 16:40-18:00hr

- Instructions Ride & Drive 12:00-13:00hr and 16:45-17:30hr
- Look at your voucher!

Poster e-dolly

Smart Power Dolly

Applus[®]

(nir)

- Need to reduce contribution of transport sector to CO2 emissions
- Need to reduce running costs of trucks (vehicle kilometers, energy & emissions, number of drivers)
- Need to reduce costs of pre & post related processes

Solution: Smart Power Dolly

DAF

- Electric drivetrain as part of a drivetrain distributed among vehicle units
- Integrated in the holistic energy management system of a complete vehicle due to vehicle-tovehicle communication system
- Compatible with any kind of semitrailer
- Additional drivetrain extend overall vehicle range
- Capability to drive remote controlled without
 towing vehicle
 www.aeroflex-project.eu

IVECO SCANIA

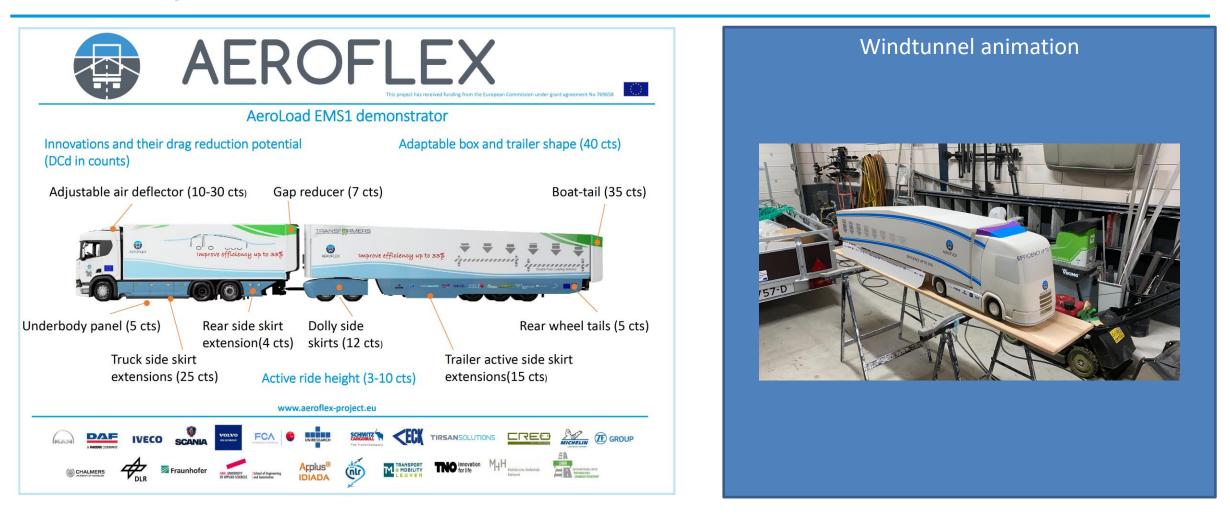
CHALMERS

Advantages & Opportunities

- Compared to a conventional dolly the e-dolly
- Enables flexible and adaptable EMS1 & EMS2 vehicle combinations
- Enables long vehicles driven with standard trucks/tractors with conventional/down-sized engines.
- Enables the use of battery electric driven trucks in EMS1 & EMS2 vehicle combinations.

Unique Value Proposition

- Can be used to split longer vehicles into independent self-driving units
- Safe handling of longer vehicles
- Reduce time for coupling


- Reduce tractors & drivers needed for shunting of semitrailers
- Later the e-dolly will drive autonomous, shunting trailers in a terminal hub.

TE GROUP

Poster aerodynamics

Posters automotive ethernet communication

AEROFLEX

Using Automotive Ethernet as backbone technology for future electrified and autonomous Truck Trailer Applications

Objectives

Within AeroFlex the development of new interface solutions for a safe communication between truck and trailers with high bandwidth and flexibility for Advanced Energy Power-Train (AEMPT) and Aerodynamic control functions were requested.

Challenges

- The selected communication technology has to be fast, flexible, reliable and extendable
- The control and monitoring of generic electric engines architectures shall be possible
- No additional plugs shall be installed but reuse of existing ISO plugs and cables is preferred.
- Legacy Support for classic truck trailer combinations shall be given, no adapters wanted

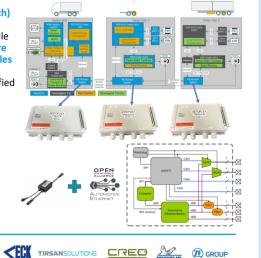
- State of the Art
- commonly used in Europe. It combines trucks and a maximum of up to 5 Trailers to build road trains.
- ISO-CAN is over the years exploited and not promising to fulfill future application requirements where fast and time sensitive communication with high bandwidths are

Using Automotive Ethernet as backbone technology for future electrified and autonomous Truck Trailer Applications

Approach

- Usage of Automotive Ethernet technology (100 Mbit/s, OA BroadR Reach) on existing ISO CAN plugs and cables
- Prototype is based on existing serial ISO CAN Router Repeater + AE module
- To support legacy CAN based vehicles, an automated detection procedure is implemented to switch to Automotive Ethernet only when both vehicles supports this technology.
- New communication protocol draft for control and monitoring of electrified engines

Results


- Stable communication with cable lengths < 20m (15m specified)</p>
- Auto switching between CAN and Automotive Ethernet mode successful.
- Automotive Ethernet on ISO Cables does not fulfill EMC Requirements (Source: VDA FAT project)

Next steps

AEROFLEX – FINAL EVENT

DAF

Creation of international standardisation proposal (SAE/ISO) for Automotive Ethernet communication using 1Gbit/s on 40m (shielded twisted pair cables on additional connector) with suitable protocol.

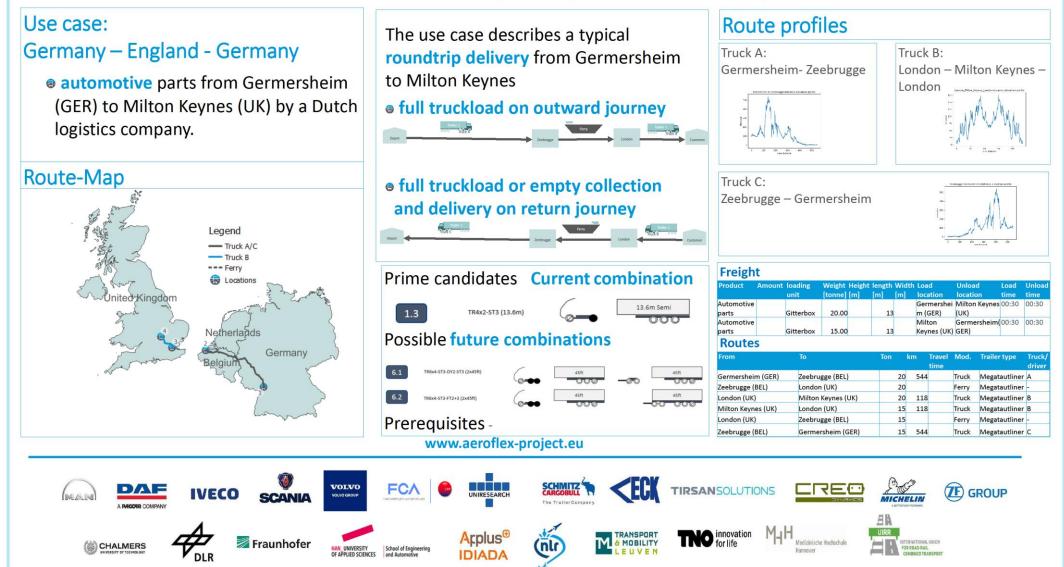
CHALMERS

Posters Smart Loading Units

Film test of flaps

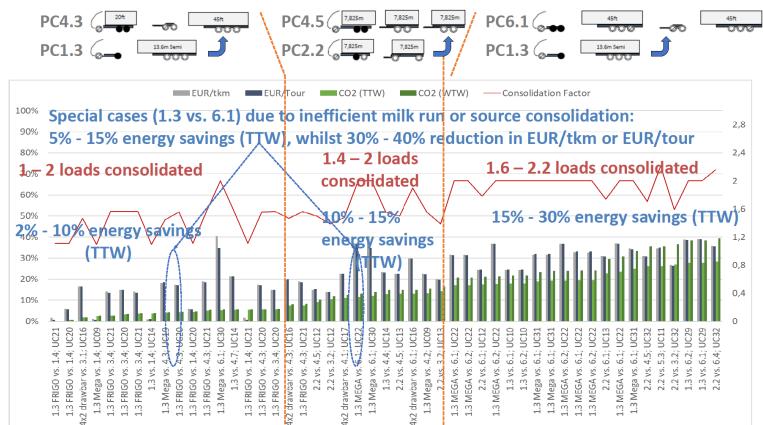
AEROFLEX – FINAL EVENT

Posters Smart Loading Units


Slide 11

021

Customer use case – Germany – England – Germany intermodal



This project has received funding from the European Commission under grant agreement No 769658

Results of use cases

source of data: expert interviews

Impact – emission savings potentials up to 30% (TTW) due to load consolidation of up to 2.2 for use cases (see table above) Average savings potentials by EMS with maximum load (€/tkm, cost/tour or CO2e WTW) show high efficiency achievements related to all use cases (see table right)

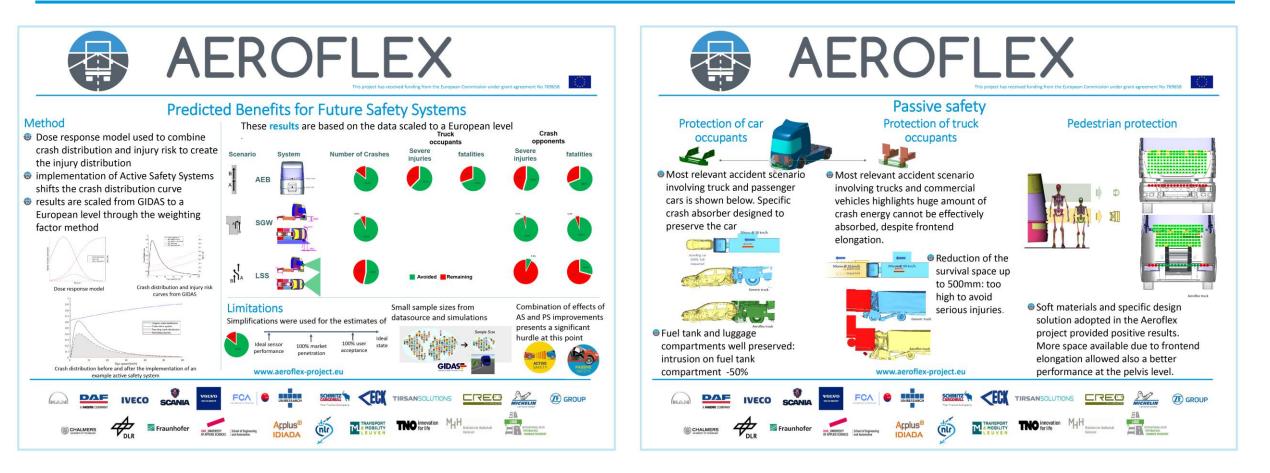
www.aaroflay.arojact.au

- 53 % of the interviewees vote for the following Prime Candidates (see table below)
- EMS 2 is the most preferred prime candidate (11.7 % of interviewees)

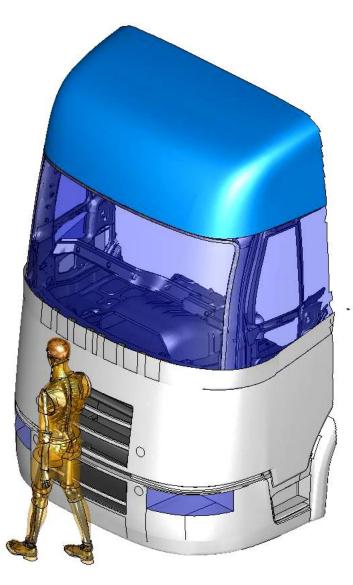
No.	Prime Candidate	Share of
6.1	45ft 45ft	11.7
2.1	7,825m 7,825m	9.7 %
3.1	45ft 20ft	9.7 %
1.4	14.92m Semi	9.3 %
2.2	7,825m 7,825m	6.6 %
4.7		6,2 %
State	e of data: expertinterviews	10.1

КРІ	€/tkm	Cost/tour	со
standard average load	18.7% (10.9)	19.0% (11.2)	2 (1
maximum load; average savings for all use cases	-28.2% (16.4)	-28.1% (16.5)	-1 (1

source of data: expert interviews



Posters assessment use cases



Posters safety

¥,×

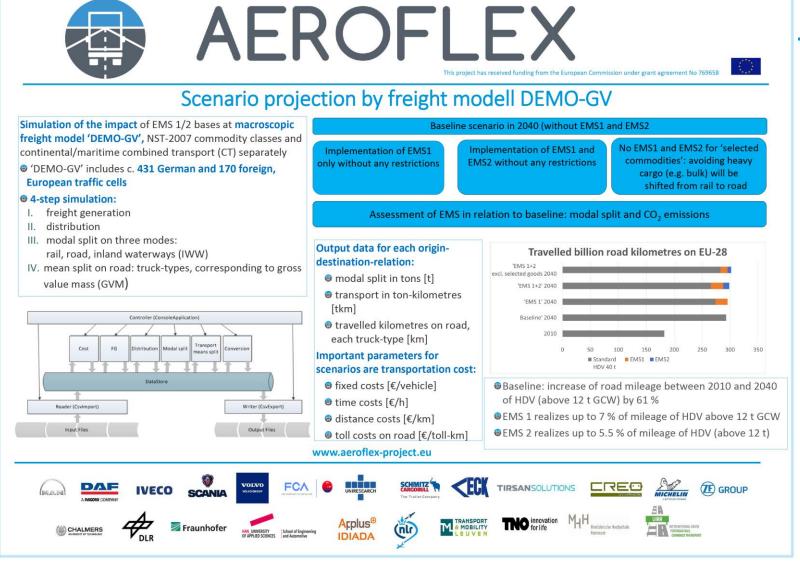
Poster safety

AEROFLEX under grant agreement No 769658

Safety Issues for Safety System Development

Method

Background


- In 2015, more than 1 million crashes happened on European roads out of which 24,000 resulted in fatalities.
- Heavy goods vehicles (HGV) were involved in 4.5% of all crashes and 14.2% of fatal crashes, indicating an overrepresentation of HGV involvement in fatal crashes.
- The basis for the design of active and passive safety systems is identification of target scenarios and an understanding of the influencing factors.

- Identifying relevant crash scenarios comprises a three-level analysis of:
- on the Roads in Europe (CARE)
- National crash databases from
- German In-Depth Accident Study (GIDAS)

- Results Most crashes involving HGVs in EU-28
- Community Database on Accidents
- Sweden, Spain and Italy
- occur in dry and clear weather conditions (81%), daylight (78%), on roads that are not highways (77%), on roads with a dry surface (72%) and additionally, the majority of crashes occur in rural areas (57%). The following most frequent and critical crash scenarios for HGVs were
- identified: Scenario 1: rear-end crashes with cars
- 16t+ trucks 1091 and commercial vehicles as collision partners. eyclists 96 ♦8.8.N 250 22.9% 56 Crash
 apponent Scenario 2: conflicts between a HGV that crossing 34 ♦ 3.1 % € 60.7 % longitudinal 192 \$17.5 % \$76.6 % turning 50 \$4.53 \$52.15 is turning to the right and a cyclist that is 272 \$24,9 % A Male crash travelling alongside with the intention to go straight. rear-end 122 1128 48.65 60.55 lane change 53 • £05 • 13.3% • 13.3% • 25.9% Scenario 3: conflicts between 86 7.9 N 917.7 % pedestrians crossing the road and HGVs. www.aeroflex-project.eu Overview of databases used for analysis **<ECX** DAF TE GROUP IVECO SCANIA (TIT) MOBILITY THO Innovation M-H Fraunhofer Applus[®] (iii) CHALMERS

Poster scenario 2040

The AEROFLEX project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 769658